Search results

Search for "hydrogen generation" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • sunlight in the presence of oxygen. The main intermediate product in the process of hydrogen photogeneration is acetaldehyde as intermediate, which can be further oxidized to CO2 and H2O, according to the following chemical equations: Hydrogen generation As can be seen in Figure 9, the H2 generation
PDF
Album
Full Research Paper
Published 22 May 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • photocatalysts in eco-friendly applications on a large scale. Bi-based nanomaterials as semiconductor photocatalysts are one of the study’s primary goals, as is the use of Bi-based nanomaterials for wastewater treatment, hydrogen generation, and photocatalytic degradation. Fabrication methods, reliability
  • analogies, and future challenges of photocatalysts derived from bismuth-based nanomaterials are also discussed. There are many review reports on synthesis and enhancement techniques of Bi-based photocatalysts and the application of these photocatalysts in hydrogen generation, CO2 reduction, and water
  • sheets, Bi2MoO6 microspheres were used. The 2D morphological properties of the Bi2O3 sheets resulted in enhanced charge carrier transfer. The relative mass ratio of Bi2MoO6 and Bi2O3 may be fine-tuned by adjusting the alkali dose (i.e., NaOH or KOH). Using phenol degradation and hydrogen generation as a
PDF
Album
Review
Published 11 Nov 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • heterojunction exhibited a synergetic effect, improving the photocatalytic activity for both hydrogen generation and organic dye degradation [10][11]). Similarly, the anatase/brookite heterojunction (38.2% brookite) also exhibited the highest degradation efficiency of cylindrospermopsin under UV–vis light [12
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • of the photocatalytic hydrogen generation process under simulated solar light irradiation is presented in Figure 7. It is clear that the designed modification of the samples strongly boosts the photocatalytic efficiency. The hydrogen evolution of Cl-PCN was approx. 4.4 times higher after 3 h in
  • relation to unmodified PCN. Therefore, chlorine doping is a reasonable strategy towards better photocatalytic hydrogen generation ability. To examine the stability of the photocatalytic activity of the Cl-doped carbon nitride, a recycle test has been performed. It revealed a decrease of approximately 2% in
PDF
Album
Full Research Paper
Published 19 May 2021

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • from external disturbances [82][83][84]. Zhong and Xu summarized, in their recent review, the preparation of metal nanoparticles for hydrogen generation from liquid chemical hydrides [85]. In their review, the usage of effective catalysts within low-dimensional cages of metal-organic frameworks was
  • films. The films grown from the amine monomer containing cobalt porphyrin exhibited catalytic activity for the electrochemical hydrogen generation from water. Dey et al. have dissolved one COF monomer into the aqueous phase by forming amine salts (Figure 12) [229]. Various multi-amino-substituted
PDF
Album
Review
Published 30 Jul 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • Jingshuai Chen Chang-Jie Mao Helin Niu Ji-Ming Song School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P.R. China 10.3762/bjnano.10.92 Abstract Photocatalytic hydrogen generation from water splitting has become a favorable route for the utilization of solar energy. An
  • . Keywords: C-doped g-C3N4; CdIn2S4; composite materials; hydrogen generation; photocatalysis; Introduction The serious environmental concerns and increasing global energy demand have instigated growing awareness in the field of alternative energy generation over the past few decades. Photocatalysis
PDF
Album
Full Research Paper
Published 18 Apr 2019

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • nanocomposites for photocatalytic hydrogen generation. The as-prepared nanocomposites generated 2–5 more hydrogen molecules in comparison with the control TiO2 nanoparticles. However, they found that the nanocomposites tend to photodegrade during photocatalytic reaction, and hence some of the nanocomposite
  • -absorbing materials in order to protect cellulosic fibres from UV bleaching [128]. An et al. [129] claimed that the prepared nano-fibrillated cellulose/magnetite/titanium dioxide nanocomposites had a higher photocatalytic hydrogen generation rate as compared to the nano-fibrillated cellulose/titanium
PDF
Album
Review
Published 19 Sep 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • indicating the stoichiometric ratio of 1:2. We propose that a semitransparent Co3O4 photoactive electrode is a prospective candidate for use in PEC cells via heterojunctions for hydrogen generation. Keywords: cobalt(II,III) oxide (Co3O4); photocathode; photoelectrochemical cells; semitransparent; thickness
  • ][14][15][16][17]. Dual-bandgap Co3O4 films provide distinct band states in the energy–momentum diagram, which is advantageous to reduce the thermalisation-related losses in the sunlight-driven hydrogen generation. Dual bandgaps in Co3O4 originate from the crystal-field split Co 3d states at the
  • water splitting by using two Co3O4 photoelectrodes. We propose a promising route for photoactive, semitransparent Co3O4 embedded in PEC cells for the light-driven hydrogen generation through water splitting. Results and Discussion The oxidation of Co nanoparticles formed a porous Co3O4 structure due to
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • dioxide, due to its suitable band position, non-toxicity, low cost, and simple synthesis, is an appropriate material for modification of various metals. Its chemical stability and biocompatibility plays an important role in various applications such as gas sensors, photocatalytic hydrogen generation
PDF
Album
Full Research Paper
Published 26 Feb 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • hydrogen generation due to a limited active surface area and low mass transfer rate. In another work, Wang et al. proposed an optofluidic microreactor with staggered micropillars in the reaction microchamber [74], as shown in Figure 4. Such structure has four favorable features: (1) enlarged surface area
PDF
Album
Review
Published 04 Jan 2018

Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

  • Xin Zhao and
  • Zhong Chen

Beilstein J. Nanotechnol. 2017, 8, 2640–2647, doi:10.3762/bjnano.8.264

Graphical Abstract
  • % increase). Keywords: bismuth vanadate; charge separation; nanostructure; photoelectrochemical water splitting; Introduction Solar hydrogen generation is one of the most promising approaches to create clean energy and to overcome the environmental problems associated with use of conventional fossil fuels
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2017

Synthesis and catalytic application of magnetic Co–Cu nanowires

  • Lijuan Sun,
  • Xiaoyu Li,
  • Zhiqiang Xu,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2017, 8, 1769–1773, doi:10.3762/bjnano.8.178

Graphical Abstract
  • plots of catalytic hydrolysis of AB and (c) hydrogen generation from AB catalyzed by bimetallic Co–Cu nanowires from the 1st to 4th cycles. Catalytic activity of different catalysts used for the hydrolysis of AB. Acknowledgements This work was funded by the National Natural Science Foundation of China
PDF
Album
Letter
Published 25 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • -C3N4 makes it a multifunctional photocatalytic material [64]. Therefore, g-C3N4 has attracted immense attention mainly for photocatalytic hydrogen generation reactions and pollutant removal by harvesting visible light due to its suitable band gap energy (≈2.7 eV) [65][66]. Hence this material possesses
  • photocatalyst for hydrogen generation from water without using any noble metal as a cocatalyst. They used moderately oxidized GO with a band gap in the range 2.4–4.3 eV, which can absorb visible light. The oxidation of graphite introduces many oxygen-containing functional groups such as carboxyl, epoxide and
  • formed by the anti-bonding π* orbital which has a higher energy level of −0.52 eV. Thus, due to the more negative anti-bonding π* orbital, which is needed for hydrogen generation, GO can act as a photocatalyst. Also, the VB edge of GO is mainly composed of O 2p orbitals and may not be positive enough to
PDF
Album
Review
Published 03 Aug 2017

Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 1546–1552, doi:10.3762/bjnano.8.156

Graphical Abstract
  • for CO oxidation reaction in literature [6][7][8][9][10][11][12]. Recently, ZrO2 has been used as a catalyst and support in different catalytic reactions such as solid-oxide fuel cells, ethanol reforming, hydrogen generation and hydrogenation [13][14][15][16][17]. It is reported to be more inert in
PDF
Album
Full Research Paper
Published 31 Jul 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • showed better catalytic performance as compared to Co only in the degradation of orange II. In another application, atomic cobalt on N-doped graphene has been used for hydrogen generation [181]. Singh et al. have prepared surface-tuned Co3O4 NPs on N-doped graphene by using a hydrothermal method [182
PDF
Album
Review
Published 24 Mar 2017

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • cells, photocatalytic water purification, and hydrogen generation by water splitting [3][4][5]. In sensor technology this n-type semiconductor is frequently considered as a promising material for gas detection applications [6]. It has excellent sensitivity and selectivity for many different gases such
PDF
Album
Full Research Paper
Published 15 Nov 2016

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • nanoparticles is shifted to more negative potentials, thus, enabling the engineering of the Fermi level of photocatalysts dependent on the size of the conjugated metal domain [49]. Recently, Au@TiO2 Janus particles were proven useful for visible-light hydrogen generation due to the strong coupling of plasmons
  • d) embedding of the final hybrid particle at the interface in a PS-PMMA blend. Reprinted with permission from [34]. Copyright 2013 Elsevier. a) Proposed photocatalytic process for efficient hydrogen generation using the Janus Au@TiO2 nanostructures, based on excitation of the LSPR under visible
PDF
Album
Review
Published 05 Dec 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • photoelectrochemical hydrogen generation [38]. As shown in Figure 4, the scheme shows that the quantum dots of CdS and CdSe on both sides of ITO can be excited and transfer electrons to the ZnO nanowire array. The CB edges of CdS and CdSe are higher than that of ZnO (Figure 4b). Due to this unique configuration and
  • [38]. A synergetic effect of nitrogen-doping and CdSe quantum-dot-sensitization on nanocrystalline TiO2 was also investigated. Interestingly, a significant photoelectrochemical hydrogen generation enhancement was observed due to CdSe sensitization and N-doping that can facilitate hole transport from
  • , thus resulting in an enhanced photocatalytic activity. Apart from photosensitization, graphene also has other functionalities such as the role of an electron acceptor and transporter, a cocatalyst, and a photocatalyst in the field of hydrogen generation. Readers may refer to a recently published review
PDF
Album
Review
Published 23 May 2014

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • the excitation of ErB and TiO2, which plays an important role in the photocatalytic hydrogen generation. The observed synergic effect could be attributed to the electron transport in TiO2 particles. Since the dye-sensitization induces an electron transfer from the excited ErB to TiO2, these electrons
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

  • Liang Wei,
  • Yongjuan Chen,
  • Jialin Zhao and
  • Zhaohui Li

Beilstein J. Nanotechnol. 2013, 4, 949–955, doi:10.3762/bjnano.4.107

Graphical Abstract
  • different precursors. Previous studies revealed that both polymorphs of ZnIn2S4 are active for photocatalytic hydrogen generation under visible light irradiations and show considerable chemical stability [17][18][19]. However, the photocatalytic hydrogen evolution activity over pure ZnIn2S4 is low, due to
PDF
Album
Full Research Paper
Published 23 Dec 2013
Graphical Abstract
  • phonon scattering come into play. 2.5 Semiconductor nanowires Semiconductor nanowires are excellent candidates to be functional elements in applications as diverse as optics, sensorics, and electronics, and energy applications such as thermoelectrics and hydrogen generation by water splitting [2][3][4
PDF
Album
Review
Published 17 Dec 2012
Other Beilstein-Institut Open Science Activities